Genome-Wide Identification of Somatic Aberrations from Paired Normal-Tumor Samples
نویسندگان
چکیده
Genomic copy number alteration and allelic imbalance are distinct features of cancer cells, and recent advances in the genotyping technology have greatly boosted the research in the cancer genome. However, the complicated nature of tumor usually hampers the dissection of the SNP arrays. In this study, we describe a bioinformatic tool, named GIANT, for genome-wide identification of somatic aberrations from paired normal-tumor samples measured with SNP arrays. By efficiently incorporating genotype information of matched normal sample, it accurately detects different types of aberrations in cancer genome, even for aneuploid tumor samples with severe normal cell contamination. Furthermore, it allows for discovery of recurrent aberrations with critical biological properties in tumorigenesis by using statistical significance test. We demonstrate the superior performance of the proposed method on various datasets including tumor replicate pairs, simulated SNP arrays and dilution series of normal-cancer cell lines. Results show that GIANT has the potential to detect the genomic aberration even when the cancer cell proportion is as low as 5∼10%. Application on a large number of paired tumor samples delivers a genome-wide profile of the statistical significance of the various aberrations, including amplification, deletion and LOH. We believe that GIANT represents a powerful bioinformatic tool for interpreting the complex genomic aberration, and thus assisting both academic study and the clinical treatment of cancer.
منابع مشابه
Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing data reveals somatic mosaicism in tumor and normal blood samples
Somatic mosaicism refers to the existence of somatic mutations in a fraction of somatic cells in a single biological sample. Its importance has mainly been discussed in theory although experimental work has started to emerge linking somatic mosaicism to disease diagnosis. Through novel statistical modeling of paired-end DNA-sequencing data using blood-derived DNA from healthy donors as well as ...
متن کاملGenome-Wide Characterization of Pancreatic Adenocarcinoma Patients Using Next Generation Sequencing
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberr...
متن کاملArray CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor
Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analy...
متن کاملA novel framework for analyzing somatic copy number aberrations and tumor subclones for paired heterogeneous tumor samples.
Application of the Next generation sequencing (NGS) technology has demonstrated that most tumor samples exhibit intra-tumor heterogeneity. Here we proposed SAPPH (Somatic Aberrations Prediction for Paired Heterogeneous tumor samples), as a new method for estimating tumor somatic copy number aberrations as well as inferring tumor subclone proportions from heterogeneous tumor sequencing data. Thi...
متن کاملDevelopment of a Tool for Copy Number Analysis of Cancer Genomes using High Throughput Sequencing Data
Genomic copy number alterations (CNA) and loss of heterozygozity (LOH) are two types of genomic instabilities associated with cancer. Acquisition of these genomic instabilities affects the expression level of oncogenes and tumor suppressor genes. Thus, accurate detection of these abnormalities is a crucial step in identifying novel oncogenes and tumor suppressor genes. Whole-genome sequencing o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014